Cloud friendly COPY
Copy from/to anything.

PostgreSQL Conference Europe 2022,
Berlin 2022.10.25

hannuk@google.com @

mailto:hannuk@google.com

Speaker introduction

Hannu Krosing

Cloud SQL / PostgreSQL
hannuk@google.com

Working with PostgreSQL since it was called Postgres9s (and also played
around with Postgres 4.2 - without the "SQL" - a little before that).

My oldest surviving post on postgresql-hackers@ mailing list archives is from
January 1998, proposing using index for fast ORDER BY queries with LIMIT.

The first DBA at Skype, where | wrote patches for making VACUUM able to
work on more than one table in parallel and invented the sharding and remote
call language p1/proxy to make it easy to use PostgreSQL in an infinitely
scalable way.

Have written books, PostgreSQL 9 Admin Cookbook and PostgreSQL Server
Programming

After Skype | did 10+ years of PostgreSQL consulting all over the world as part
of 2ndQuadrant.

For last few years he has been a PostgreSQL Database Engineer at Google
working mostly with Cloud SQL.

Google Cloud

PostgreSQL on local server and Cloud PostgreSQL

PostgreSQL on local server and Cloud PostgreSQL

Runs on "a server"
Fixed location

Fixed number of CPUs
Fixed amount of RAM
Fixed size Disk

e Traffic to disk only through server

Runs in a VM in the Cloud

Moves around between physical servers
Flexible nr of CPUs

Flexible amount of RAM

Disks grow and shrink as needed

Disks are accessible directly
Backups can happen entirely "on storage’
Can snapshot live disk, then use in another VM

COPY statement now

e Hard-wired in syntax, flags are defined in grammar
e Monolithic code (was re-factored a little between Pg13 and Pg14)

NalNnURET Iaiinius . PUSLEI €5 BI1L LICLKOUL KCL_ 13 _S1ADLLC
branch 'REL_13_STABLE' set up to track ‘'origin/REL_13_STABLE'.
PY 3 “formats" Switched to a new branch 'REL_13_STABLE’)
“ . hannuk@hannuk: postgress 1s -1 ./src/backend/commands/copy
@) Na‘t|ve -rW-F----- 1 hannuk primarygroup 151082 Oct 26 14:02 ./src/backend/commands/copy.c
hannuk@hannuk:postgress git checkout REL_14_STABLE
O CSV branch 'REL_14_STABLE' set up to track ‘'origin/REL_14_STABLE'.
. ” Switched to a new branch 'REL_14_STABLE'
O Blnal'y hannuk@hannuk:postgress 1s -1 ./src/backend/commands/copy*
~TW-F ===~ 1 hannuk primarygroup 24187 Oct 26 14:02 ./src/backend/commands/copy.c
~IW-T----- 1 hannuk primarygroup 49804 Oct 26 14:02 ./src/backend/commands/copyfrom.c
“ n -rW-r----- 1 hannuk primarygroup 53254 Oct 26 14:02 ./src/backend/commands/copyfromparse.c
L4 3 TranSPOI'tS ~IW-F ===~ 1 hannuk primarygroup 34883 Oct 26 14:02 ./src/backend/commands/copyto.c
hann annuk:
o STDlN/STDOUT annuk@hannuk: postgress I:l

o Localfile (and this is disabled in cloud)
o Pipeto local PROGRAM

e No compression or other stream manipulation
No Parallelism

e No Index handling

Cloud data now

e Tens of different data formats
o avro, parquet, orc
o xls
o CSV

e Tens of transports

o GCS,S3, ..
o ftp, http(s), scp, ...
o NFS, CIFS

e Compression is widely used at rest and in transit
o Qzip, 1z4, zstd, ...

e Parallelism is often used

Extending PostgreSQL via pluggable modules

e PostgreSQL already uses virtual function tables like used in
o Index access methods
o Table access methods
o logical decoding (CDC)

o Foreign Data Wrappers (FDW)

This extensibility is needed for COPY too!

e 3 Dimensions
o FORMAT
o TRANSPORT
o STREAM_PROCESSOR
m (actually pre and post stream generation)
m When still table format, then things like anonymisation
m On external stream,
e compression
e Network control, throttling
e encryption

e Internally more enhancements via full replacement hooks

COPY extended possibilities

e COPY mytable TO 'gs://mybucket/mybasefilename’
e COPY mytable TO gs://mybucket/mybasefilename
WITH (CHUNKS 4, COMPRESSION ‘Iz4’, ...)

uses parallel scans with direct storage to cloud via Iz4 pipe

e COPY .. WITH (INDEXES “defer’)

copies first, then updates indexes

COPY full replacement extensions

e LOCAL COPY in database
o COPY TABLE TO local://TABLE2
o COPY SCHEMA S1TO local://S2
Can utilise FS level lopy
Use reflink if available in FS (btrfs, XFS, ...)
COPY BETWEEN LOCAL DATABASES
COPY TO fdw://.../
COPY ... WITH (CHUNKS 4, COMPRESSION ‘Iz4’, ...)
COPY ... WITH (FORMAT “split_binary’, INDEXES "defer’)

COPY extensions

COPY ... WITH (CHUNKS 4,...)
o Set up parallel segscan, but instead of berging results, stream directly to
destination(s)
COPY ... WITH (COMPRSSION ‘1z4’, ...)
o As it says, compress the stream
COPY ... WITH (FORMAT “split_binary")
o There is a serious degradation in seqscan for huge tables with many
TOASTED fields
o Copying toast pointers as toast pointers and copying TOAST table separately
should give huge speedup
COPY ... WITH (INDEXES “defer’, ...
o Managing indexes during copy should be handled by COPY

COPY and file_fdw

e file_fdw directly reuses COPY internals for it working
o file_fdw will gain ability to work with GCS and other “cloud” storages

e And we should make sure that all other pg_file_***() functions also use COPY

COPY pg_dump

e Can pg_dump data directly to GCS
e Can use parallel dump, “directory” format
e dump large tables in chunks, to GCS, in parallel

How to get there

Refactor COPY in gram.y to accept flexible flags
Introduce virtual function arrays
Refactor current formats and transports to use the above
Add new ones,
o atleast GCS,
o hopefully also postgres_fdw
e Parallel copy - if target is GCS, or FDW allow normal segscan
parallelization to use these as output sink
e Refactor “file functions” (pg_Is_dir(), pg_read_file(), pg_read_binary_file(),
...) to use COPY

STEPS

foreach(cur, cstate->attnumlist)

{
int attnum = 1first_int(cur);
Datum value = slot->tts_values[attnum - 1];
bool isnull = slot->tts_isnull[attnum - 17;

e Refactor current formats e T T
and transports }

if (isnull)

{
if (!cstate->opts.binary
CopYSene g at®, cstate->opts.null_print_client);

else
CopySendInt32(cstate, -1);

s

else

{
if{(!cstate->opts.binary)
1

string = OutputFunctionCall(&out_functions[attnum - 1],

if(cstate->opts.csv_mode)
Copy ihutel ate, string,
cstate->opts.force_quote_flags[attnum - 17,
list_length(cstate->attnumlist) == 1);
else
CopyAttributeOutText(cstate, string);
}

else

{
bytea *outputhytes;

Pluggable COPY Extension

Usually features are not back-ported to older mayor versions
... S0 we should provide a “CloudSQL COPY” extension

Starts from copy of COPY code
Rewritten for Pluggability
Hooks UtilityCommand
Has a set of cloudsqlcopy.<flag> flags to override COPY behaviour
So when customer installs it DMS can
o Copy data in using all the Pluggable COPY goodness
Parallel
Compressed
Chunked
SPLIT main and TOAST
With automatic index and FK managenet

O O O O O

Pluggable COPY Extension v0.2

Usually features are not back-ported to older mayor versions
... S0 we should provide a “CloudSQL COPY” extension

e Starts from copy of COPY code

e Rewritten for Pluggability

e Enchanced UtilityCommand Hook, which also catches syntax error and can completely
override or add new Utility Commands

e Has a set of cloudsqlcopy.<flag> flags to override COPY behaviour (still useful for
non-modified apps, like pglogical)

e So when customer installs it DMS can

(@)

O O O O

Copy data in using all the Pluggable COPY goodness

Parallel, Chunked

Compressed

SPLIT main and TOAST

With automatic index and FK management and non-cascading TRUNCATE option

Cloud friendly COPY
Copy from/to anything.

PostgreSQL Conference Europe 2022,
Berlin 2022.10.25

hannuk@google.com @

mailto:hannuk@google.com

