
Proprietary + Confidential

Cloud friendly COPY
Copy from/to anything.
PostgreSQL Conference Europe 2022,
Berlin 2022.10.25

hannuk@google.com

mailto:hannuk@google.com

Speaker introduction

Working with PostgreSQL since it was called Postgres95 (and also played
around with Postgres 4.2 - without the "SQL" - a little before that).

My oldest surviving post on postgresql-hackers@ mailing list archives is from
January 1998, proposing using index for fast ORDER BY queries with LIMIT.

The first DBA at Skype, where I wrote patches for making VACUUM able to
work on more than one table in parallel and invented the sharding and remote
call language pl/proxy to make it easy to use PostgreSQL in an infinitely
scalable way.

Have written books, PostgreSQL 9 Admin Cookbook and PostgreSQL Server
Programming

After Skype I did 10+ years of PostgreSQL consulting all over the world as part
of 2ndQuadrant.

For last few years he has been a PostgreSQL Database Engineer at Google
working mostly with Cloud SQL.

Hannu Krosing
Cloud SQL / PostgreSQL

hannuk@google.com

Proprietary + Confidential

PostgreSQL on local server and Cloud PostgreSQL

Proprietary + Confidential

PostgreSQL on local server and Cloud PostgreSQL

● Runs on "a server"
● Fixed location
● Fixed number of CPUs
● Fixed amount of RAM
● Fixed size Disk

● Traffic to disk only through server

● Runs in a VM in the Cloud
● Moves around between physical servers
● Flexible nr of CPUs
● Flexible amount of RAM
● Disks grow and shrink as needed

● Disks are accessible directly
● Backups can happen entirely "on storage"
● Can snapshot live disk, then use in another VM

Proprietary + Confidential

COPY statement now

● Hard-wired in syntax, flags are defined in grammar
● Monolithic code (was re-factored a little between Pg13 and Pg14)

● 3 “formats”
○ “Native”
○ CSV
○ “Binary”

● 3 “Transports”
○ STDIN/STDOUT
○ Local file (and this is disabled in cloud)
○ Pipe to local PROGRAM

● No compression or other stream manipulation
● No Parallelism
● No Index handling

Proprietary + Confidential

Cloud data now

● Tens of different data formats
○ avro, parquet, orc
○ xls
○ csv

● Tens of transports
○ GCS, S3, …
○ ftp, http(s), scp, …
○ NFS, CIFS

● Compression is widely used at rest and in transit
○ gzip, lz4, zstd, …

● Parallelism is often used

Proprietary + Confidential

Extending PostgreSQL via pluggable modules

● PostgreSQL already uses virtual function tables like used in

○ Index access methods

○ Table access methods

○ logical decoding (CDC)

○ Foreign Data Wrappers (FDW)

Proprietary + Confidential

This extensibility is needed for COPY too!

● 3 Dimensions
○ FORMAT
○ TRANSPORT
○ STREAM_PROCESSOR

■ (actually pre and post stream generation)
■ When still table format, then things like anonymisation
■ On external stream,

● compression
● Network control, throttling
● encryption

● Internally more enhancements via full replacement hooks

Proprietary + Confidential

COPY extended possibilities

● COPY mytable TO 'gs://mybucket/mybasefilename'

● COPY mytable TO gs://mybucket/mybasefilename

WITH (CHUNKS 4, COMPRESSION ‘lz4’, …)

uses parallel scans with direct storage to cloud via lz4 pipe

● COPY … WITH (INDEXES `defer`)

copies first, then updates indexes

Proprietary + Confidential

COPY full replacement extensions

● LOCAL COPY in database
○ COPY TABLE TO local://TABLE2
○ COPY SCHEMA S1 TO local://S2

Can utilise FS level lopy
Use reflink if available in FS (btrfs, XFS, …)

● COPY BETWEEN LOCAL DATABASES
● COPY TO fdw://…/
● COPY … WITH (CHUNKS 4, COMPRESSION ‘lz4’, …)
● COPY … WITH (FORMAT `split_binary`, INDEXES `defer`)

Proprietary + Confidential

COPY extensions

● COPY … WITH (CHUNKS 4,...)
○ Set up parallel seqscan, but instead of berging results, stream directly to

destination(s)
● COPY … WITH (COMPRSSION ‘lz4’, …)

○ As it says, compress the stream
● COPY … WITH (FORMAT `split_binary`)

○ There is a serious degradation in seqscan for huge tables with many
TOASTED fields

○ Copying toast pointers as toast pointers and copying TOAST table separately
should give huge speedup

● COPY … WITH (INDEXES `defer`, …)
○ Managing indexes during copy should be handled by COPY

Proprietary + Confidential

COPY and file_fdw

● file_fdw directly reuses COPY internals for it working

● file_fdw will gain ability to work with GCS and other “cloud” storages

● And we should make sure that all other pg_file_***() functions also use COPY

Proprietary + Confidential

COPY pg_dump

● Can pg_dump data directly to GCS
● Can use parallel dump, “directory” format
● dump large tables in chunks, to GCS, in parallel

Proprietary + Confidential

How to get there

● Refactor COPY in gram.y to accept flexible flags
● Introduce virtual function arrays
● Refactor current formats and transports to use the above
● Add new ones,

○ at least GCS,
○ hopefully also postgres_fdw

● Parallel copy - if target is GCS, or FDW allow normal seqscan
parallelization to use these as output sink

● Refactor “file functions” (pg_ls_dir(), pg_read_file(), pg_read_binary_file(),
…) to use COPY

Proprietary + Confidential

STEPS

● Refactor current formats
and transports

Proprietary + Confidential

Pluggable COPY Extension

Usually features are not back-ported to older mayor versions
… so we should provide a “CloudSQL COPY” extension

● Starts from copy of COPY code
● Rewritten for Pluggability
● Hooks UtilityCommand
● Has a set of cloudsqlcopy.<flag> flags to override COPY behaviour
● So when customer installs it DMS can

○ Copy data in using all the Pluggable COPY goodness
○ Parallel
○ Compressed
○ Chunked
○ SPLIT main and TOAST
○ With automatic index and FK managenet

Proprietary + Confidential

Pluggable COPY Extension v0.2

Usually features are not back-ported to older mayor versions
… so we should provide a “CloudSQL COPY” extension

● Starts from copy of COPY code
● Rewritten for Pluggability
● Enchanced UtilityCommand Hook, which also catches syntax error and can completely

override or add new Utility Commands
● Has a set of cloudsqlcopy.<flag> flags to override COPY behaviour (still useful for

non-modified apps, like pglogical)
● So when customer installs it DMS can

○ Copy data in using all the Pluggable COPY goodness
○ Parallel, Chunked
○ Compressed
○ SPLIT main and TOAST
○ With automatic index and FK management and non-cascading TRUNCATE option

Proprietary + Confidential

Cloud friendly COPY
Copy from/to anything.
PostgreSQL Conference Europe 2022,
Berlin 2022.10.25

hannuk@google.com

mailto:hannuk@google.com

